Туристский форум Карелия-2010 Туристический портал



Подводный мир

Под водой – биологи

Снова в воду



ГлавнаяСнова в воду ⇒ В зону вечного мрака


В зону вечного мрака

Рассмотрим, как природа решила для китообразных проблему глубинного погружения и длительной задержки дыхания, необходимые для лова добычи и нормального питания.

Большинство представителей отряда обычно погружается на глубину в пределах наиболее продуктивного слоя фотосинтеза. Однако наилучшие ныряльщики – кашалоты – погружаются до одного, а может быть, даже до 2,5 км и задерживают дыхание до полутора часов. Даже дельфины (афалина) в условиях опыта погружались до 300 м. Судя же по находке неповрежденной глубоководной рыбы в пищеводе афалины, загарпуненной у Иворийского побережья над глубиной 500-800 м, она может нырять до полукилометровой глубины. Но в неволе потенциальные способности афалин к нырянию сильно ослабляются, если не поддерживаются специальной тренировкой.

Какие существуют приспособления у китообразных для погружения на столь большие глубины? Что им позволяет надолго выключать внешнее дыхание и выдерживать колоссальное давление (у кашалота до 1 ц на каждый квадратный сантиметр)?

Первостепенное значение в этом имеют следующие физиологические адаптации:

1. Китообразные перед погружением запасаются большими резервами кислорода. Главную роль в этом играют дыхательные пигменты – гемоглобин в крови и миоглобин в мышцах. Особенно примечательно весьма высокое содержание миоглобина, которого, например, в мышцах дельфина-белобочки, в 4,5 раза больше, чем в мышцах человека. При дыхании кита на поверхности кислородом насыщается как миоглобин, так и гемоглобин, и зверь ныряет с увеличенным (до 40%) запасом кислорода, который отдается тканям во время дыхательной паузы. Миоглобин обеспечивает кислородом главным образом работающие мышцы.

Японские ученые подсчитали, что в грамме мышц кашалота миоглобина содержится в 8-9 раз больше, чем в грамме мышц быка. Высокая концентрация миоглобина в мышцах дельфинов позволяет им совершать длительную мышечную работу за счет аэробных источников энергии.

2. Во время ныряния у китообразных вдвое* замедляется пульс, что особенно заметно во второй половине дыхательной паузы. Таким образом, работа сердца становится более экономной, вместе с тем уменьшается пропускная способность сосудов мышц и перераспределяется ток крови, чему способствует система многочисленных сфинктеров в венах. Кровь двигается медленнее, и ткани получают кислород в уменьшенном количестве; это усугубляется действием сфинктеров, задерживающих кровь в большой полой вене. Благодаря такому перераспределению кровь при нырянии снабжает кислородом в первую очередь головной и спинной мозг и сердечную мышцу. Кольцевидные мускулы-сфинктеры перекрывают часть вен, несущих кровь из разных участков тела, и тогда многие органы и мышцы ныряющего кита довольствуются лишь тем кислородом, который своевременно запасен миоглобином. Вероятно, поэтому мышечная ткань китообразных имеет высокую степень капилляризации.

Чем мельче китообразные, тем чаще их пульс. Кардиограммы показали частоту сердцебиения на поверхности воды и на глубине: у афалины 110 и 50 ударов, у белухи – 30 и 16, а у раненого кита-полосатика – 30 и 15 уд/мин. В механизме развития урежения пульса (брадикардия) имеет значение повышение гидростатического давления среды. Путем имитации погружения и повышением наружного давления до 1,2-2 атм А. З. Колчинской с соавторами удалось сокращать пульс у афалин в 2,5-4 раза. Тренировкой можно увеличить степень брадикардии. Американский физиолог Роберт Эльснер с сотрудниками в 1966 г. у обученных нырять по команде афалин снижал пульс с 90 до 12 ударов при дыхательной паузе 4 мин 42 с, однако через 2 мин пульс увеличивался до 20 ударов. Российские ученые С. П. Колчин и В. М. Белькович выяснили в 1970 г., что приспособительные реакции сердца дельфинов к погружению-всплытию связаны с изменением чувствительности сердечно-сосудистой системы к медиаторам (посредникам нервного возбуждения) – ацетилхолину и норадреналину. Урежение пульса при нырянии определяется холинорецепторной регуляцией сердца.

В процессе ныряния кислородная задолженность в мышцах возрастает. В них происходит бескислородный гликолиз и накапливается конечный продукт расщепления углеводов – молочная кислота. Однако она появляется в крови тогда, когда животное уже будет на поверхности. Выключение из системы кровообращения мускулатуры приводит к тому, что молочная кислота, накопившаяся при мускульной работе, не разносится по телу, а остается в мышцах. Но как только кит вынырнет и в мышцах восстановится нормальное кровообращение, молочная кислота сразу появляется в крови.





karelia2010@list.ru
© 2010-2011 Все права защищены.
В случае перепечатки материалов ссылка на
www.karelia2010.ru обязательна!