Туристский форум Карелия-2010 Туристический портал



Подводный мир

Под водой – биологи

Снова в воду



ГлавнаяСнова в воду ⇒ Плавники регулируют тепло


Плавники регулируют тепло

Способность теплокровных животных поддерживать температуру тела на одном и том же уровне при различных условиях внешней среды свидетельствует о том, что теплорегуляция (химическая регуляция тепла) и теплоотдача (физическая регуляция тепла) в их организме уравновешены. В ходе эволюции высокая теплопроводность среды способствовала формированию у китообразных многих признаков, обеспечивающих эффективную регуляцию тепла. У них по сравнению с большинством наземных млекопитающих повысился общий уровень обмена веществ (метаболизм) и интенсифицировалась химическая регуляция тепла (убыстрился пищеварительный процесс, увеличилась частота кормежек, возросли роль белкового питания и питательность молока). Вместе с тем развились многообразные теплозащитные приспособления: концентрация жира под кожей в виде мощного слоя сала; увеличение общей массы животного с относительным сокращением поверхности тела, отдающей тепло; утрата всех "неэкономичных" выступов тела, в том числе задних конечностей, ушных раковин, мошонки; рождение очень крупных детенышей, чему способствует редукция таза.

Резко пониженная частота дыхания у китообразных – тоже теплозащитное приспособление.

Мелкие по размерам китообразные (дельфины) приобрели дополнительные теплозащитные приспособления: у них по сравнению с китами резче возросло относительное количество жира под кожей (у морских свиней до 50% веса тела) и укрупнились новорожденные относительно размеров тела матери (до половины длины тела родителя). Возможно, с проблемой терморегуляции связаны и резкие различия средней величины тела у южных и северных полосатиков: как было нами показано еще в 1947 г., крупнорослые южные расы почти всех видов полосатиков существуют в более холодном гидрологическом режиме Южного полушария, а мелкорослые расы – в более теплом режиме Северного полушария.

Жизнь в воде, с полным отрывом от суши наложила глубокий отпечаток на способы регуляции тепла китообразных. Их нормальная температура тела близка к 36-37°. Между тем им все время приходится плавать то очень быстро, то медленно, нырять на разную глубину в условиях меняющейся температуры среды. У многих китов перемена условий усугубляется еще сезонными миграциями из холодных морей в теплые и обратно. Эти обстоятельства подсказывают, что китообразные должны обладать очень совершенными терморегуляторами.

Органы регуляции тепла у этих животных были открыты в 1947 г. при следующих обстоятельствах. Автор этой книги, перетаскивая живых дельфинов по палубе сейнера, заметил, что у одних животных плавники были горячими, а у других – холодными. У первых плавники были теплее боков тела на 10,5° даже у одного и того же индивидуума, когда окружающий воздух имел 21-24°, а у вторых были такими же холодными, как и бока. Стало ясно, что не все части поверхности тела отдают тепло одинаково интенсивно и что разница между температурой на плавниках и на боку тела может резко меняться.

У девяти подопытных дельфинов, находившихся вне воды, температура на плавниках была выше окружающего воздуха на 5-12°, а на боках тела эта разница не превышала 4°. Следовательно, при одних и тех же внешних условиях температура на плавниках варьировала гораздо резче, чем на поверхности туловища.

В плавниках китообразных происходят синхронно два явления – и терморегуляции, и саморегуляции упругости, причем механизм того и другого в основном определяется деятельностью кровеносной системы. С одной стороны, в плавниках автоматически регулируется гидроупругость в зависимости от режима плавания: чем быстрее китообразное плывет и энергичнее работает хвостовым плавником, тем выше упругость плавников, возрастающая за счет притока крови к ним. С другой стороны, плавники нагреваются тем интенсивнее, чем больше притекает к ним крови, и тем самым эффективнее отдают в наружную среду то избыточное тепло, которое возникает при усиленной работе хвоста.

Процессы терморегуляции и саморегуляции упругости плавников здесь идут параллельно, так как необходимость наибольшей отдачи тепла возникает тогда же, когда требуется и максимальная жесткость хвостовых лопастей, т. е. во время стремительного хода животного и энергичных ударов хвостом. Комплексные сосуды работают по следующей схеме. При быстром плавании и усиленной мускульной работе артерия комплексного сосуда расширяется, сдавливая стенки оплетающих ее вен; теперь отток крови из хвостового плавника в условиях возросшего ее притока не может происходить по сдавленным венам комплексного сосуда, и тогда вступают в действие одиночные вены, которые наполняются кровью; гиподермальная кровеносная сеть (при возросшем кровотоке) сильно наполняется. В этих условиях и жесткость хвостовых лопастей и теплоотдача будут наибольшими.

При медленном плавании, отдыхе и слабой работе хвоста кровоток к хвостовым лопастям уменьшается, артерия, по которой сюда подается кровь, суживается; отток крови вполне обеспечивают оплетающие артерию вены, а одиночные вены остаются частично незаполненными. Гиподермальная сеть заполняется незначительно, и жесткость хвостовых лопастей уменьшается.

Наши многократные замеры температуры в прямой кишке и на плавниках дельфинов показали, что китообразным приходится интенсивнее всего отдавать избыточное тепло при мышечной работе. В этом отношении примечателен факт, наблюдавшийся нами в Батумском дельфинарии: у дельфинов, стремительно гоняющихся друг за другом по бассейну или часто выпрыгивающих из воды, розовеет брюхо. Видимо, когда необходимо быстро отдать тепло при усиленной мышечной работе, в помощь плавникам подключается и остальная поверхность тела. Приток крови вызывает порозовение на светлых участках кожи. (Этот же эффект свидетельствует и о самонастройке демпфирования кожи при активном плавании.)





karelia2010@list.ru
© 2010-2011 Все права защищены.
В случае перепечатки материалов ссылка на
www.karelia2010.ru обязательна!